Covering pairs by q2 + q + 1 sets

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON RELATIVE CENTRAL EXTENSIONS AND COVERING PAIRS

Let (G;N) be a pair of groups. In this article, first we con-struct a relative central extension for the pair (G;N) such that specialtypes of covering pair of (G;N) are homomorphic image of it. Second, weshow that every perfect pair admits at least one covering pair. Finally,among extending some properties of perfect groups to perfect pairs, wecharacterize covering pairs of a perfect pair (G;N)...

متن کامل

Minimal blocking sets of size q2+2 of Q(4, q), q an odd prime, do not exist

Consider the finite generalized quadrangle Q(4, q), q odd. An ovoid is a set O of points of Q(4, q) such that every line of the quadric contains exactly one point of O. A blocking set is a set B of points of Q(4, q) such that every line of the quadric contains at least one point of B. A blocking set B is called minimal if for every point p ∈ B, the set B \ {p} is not a blocking set. The GQ Q(4,...

متن کامل

On q2/4-sets of type (0, q/4, q/2) in projective planes of order q=0(mod 4)

In this paper we investigate qz/4-sets of type (O,q/4,q/2) in projective planes of order q=O(mod4). These sets arise in the investigation of regular triples with respect to a hyperoval. Combinatorial properties of these sets are given and examples in Desarguesian projective planes are constructed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 1990

ISSN: 0097-3165

DOI: 10.1016/0097-3165(90)90034-t